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ABSTRACT

STATISTICAL AND MACHINE LEARNING MODELLING OF SUICIDE
RATE WITH RESPECT TO PROVINCES IN TURKEY

Erdoğan, Süleyman

M.S., Department of Statistics

Supervisor: Prof. Dr. Özlem İlk Dağ

July 2022, 75 pages

There are many factors that can affect the individual’s mental health and thus lead

them to commit suicide. This study, focuses on the social and economic factors that

may contribute to the suicide rates in all provinces of Turkey. Possible effects of these

factors are studied in an 8 year period between 2012-2019 using standard longitudi-

nal data modelling methods and hybrid modelling methods. Standard longitudinal

data models include; fixed effect models,random effect models and transition models

whereas hybrid models include Mixed Effect Regression Tree(MERT) models,Mixed

Effect Random Forest(MERF) models,Random Effect - Expectation Maximization

Trees(RE-EM Tree) models. The overall results suggest that the divorce and health-

care accessibility of the provinces have significant relation with the suicide rates of

provinces. Another observed result was the hybrid models overall performed better

than the standard longitudinal data models.

Keywords: Longitudinal Data, Fixed Effect Models, Random Effects Models, Tran-

sition Models, Hybrid Models
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ÖZ

TÜRKİYE’DEKİ İNTİHAR HIZININ İLLER BAZINDA İSTATİSTİKSEL
VE MAKİNE ÖĞRENMESİ MODELLEMESİ

Erdoğan, Süleyman

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi: Prof. Dr. Özlem İlk Dağ

Temmuz 2022 , 75 sayfa

Ruhsal sağlığı etkileyen ve kişiyi intihara sürükleyen birçok faktör vardır. Bu çalışma,

Türkiye’deki bütün illerdeki intihar oranı ile bağlantılı olabilecek sosyal ve ekonomik

faktörleri incelemektedir. Bu olası faktörler, 2012-2019 yıllarını kapsayan 8 yıllık bir

dönemde standart uzunlamasına veri modeli metodları ve hibrit model metodları kul-

lanılarak analiz edilmiştir. Standart uzunlamasına veri modelleri; Sabit Etkiler Mo-

deli, Rassal Etkiler Modeli ve Geçiş Modelini kapsamaktayken, hibrit modeller karı-

şık etki regresyon ağacı(MERT) modeli, karışık etki rastgele orman(MERF) modeli

ve rassal etki - beklenti maksimizasyonu ağacı(RE-EM Tree) modellerini kapsamak-

tadır. Modellerin sonucunda, faktörler arasından boşanma ve illerdeki sağlık imkan-

larının, illerdeki intihar oranı ile önemli bir ilişkisi olduğu görülmüştür. Bir diğer

gözlemlenen sonuçta ise hibrit modellerin, standart uzunlamasına veri modellerinden

daha iyi sonuç verdiği gözlemlenmiştir.

Anahtar Kelimeler: Uzunlamasına Veri, Sabit Etkiler Modeli, Rassal Etkiler Modeli,
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Geçiş Modeli, Hibrit Modeli
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CHAPTER 1

INTRODUCTION

Suicide, which is defined as death caused by self harm with the intent to die, has been

of interest to several different fields of science throughout the history. Majority of

this interest comes from the fields of psychology and psychiatry. Both of these fields

explore the underlying mental health conditions that can lead to suicide. Some of

the other fields that research suicide from different perspectives include biology and

philosophy. One of the examples of the biological research on suicide includes the

research on the cellular suicide (Steller, 1995). While not fully adhering to the defini-

tion mentioned above, cellular suicide, also known as apoptosas, is the programmed

self destruction of the cells.Topic of suicide has been a point of debate in the field of

Philosophy for centuries. Those discussions mainly centered around the suicide as

an ethical issue (Kelly & Dale, 2011). In this thesis we are exploring suicide from

statistical perspective by modelling the factors that may contribute to it.

It is crucial to understand the reasons behind the suicide in order to prevent it. While

individual reasons for suicide vary significantly, external factors can contribute to the

mental health problems that can lead to suicide. Sociologist Emile Durkheim, in his

famous book(Durkheim, 1951), pioneered the idea that the societal factors can con-

tribute to the suicidal inclination rather than the individual reasons alone. Durkheim

also in his book, defined suicide in different categories based on the reasons behind

the suicide. Majority of these reasons include individual’s reaction to societal changes

and expectations. Since we are exploring suicide from a statistical perspective; we

are interested in the factors that can be quantified by data. Rather than exploring in-

dividual data for suicide however, we are taking a broader approach in this thesis by

researching the factors related to the suicide rate of provinces. Specifically we are an-
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alyzing the socio-economic data of all 81 provinces of Turkey, such as GDP per capita

and divorce rate. After deciding the related factors to use as predictors in our model,

statistical modelling of suicide rates of all 81 provinces in Turkey are constructed to

determine the significance of these factors in predicting the suicide rate.

In the model annual suicide rates of all 81 provinces of Turkey between years 2012

and 2019 are used as the dependent variable. Since multiple subjects are observed

across several different time points, longitudinal data models are used for statistical

modelling. While there are few studies about statistical analysis of suicide numbers in

Turkey, none of them include the longitudinal data modelling of all 81 provinces. This

study allows us to see the effects of yearly socio-economic changes on the suicide rate

with respect to each provinces of Turkey. Discovering the related factors that have

significant effect on the suicide rate would be important to address those issues and

to help decrease suicide numbers in the future.

To determine the optimal model, well known longitudinal models such as the fixed

effect, random effect and transition models were tested. Afterwards hybrid machine

learning models were also tested for comparison. Those techniques include: mixed

effects regression tree (MERT),mixed effects random forest (MERF) and random ef-

fects expectation maximization trees (RE-EM Trees). Main premise behind these

approaches is to replace linear estimation of the fixed component in the longitudinal

models with trees or tree-based machine learning algorithms. For all of the statistical

modelling we used several different R packages which we will look into more detail

in the later sections.

This thesis study is organized in five chapters. In the first chapter we gave a brief

introduction to the topic and introduced the methods that we will use to explore the

given topic. Second chapter will include the review of the literature for studies on

longitudinal data modelling of suicide around the world. In the third chapter we will

give more detailed explanations about the three mentioned longitudinal data models

as well as the three machine learning methods. After these explanations in Chapter 3,

we will give exploratory analysis as well as the results of each model. In the fifth and

final chapter we will summarize the results we obtained from the models and give our

final conclusions as well as investigate possible future studies.
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CHAPTER 2

LITERATURE REVIEW

In this section we examined some of the studies in the literature that researched the

factors related to the number of suicides and suicide rates around the world. Since the

scope of this thesis is based on the provinces, the studies that are included here re-

search the related factors based on provinces, states and countries rather than individ-

uals. Majority of these models utilized the fixed effect model where the distribution

of the dependent variable are either normal or negative binomial. The reason for that

is while suicide numbers are discrete, suicide rate is continuous which necessitates a

different distribution when modelling.

Minoiu and Andrés (2008) explored the effects of public spending on health and wel-

fare as well as several other social and economic factors on the suicide rates of US

states between 1982 and 1997. These factors include: State income, public health ex-

penditure(PHE), public welfare expenditure(PWE), divorce rate, gini index, migrant

population, unemployment rate, dummy variable to indicate whether the state is par-

ticularly mountainous, population density and average yearly number of days with

sunshine. First four variables mentioned are used in one-period lagged form which

is cited as the main reason for the preference of Generalized Method of Moments es-

timator(GMM) for modelling over the classic fixed effect models. Following results

were obtained: Divorce rate, mountain state dummy and PWE were significant for

overall, male and female suicide rate models. Among these variables; divorce rate

and mountain state dummy had positive relation with suicide rate whereas PWE had

negative relation. Population density was significant and negatively associated for

male and overall suicide rate only.

Milner et al. (2010) investigated the effects of socio economic factors on the male and
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female suicide rate of 35 countries between 1980 and 2006. A least-square dummy

variable (LSDV) fixed-effect model was used in the analysis and following variables

were included as the predictor variables in the model: Divorce rate, percentage of

employed population in agriculture(EA), international migrant population, rural pop-

ulation, unemployment rate, female population in labor force, fertility rate, public

health expenditure(PHE), number of elder population(people over 65 years old) and

GDP per capita. Among these variables; unemployment rate, elder population, PHE

and female labour force were significant for both gender suicide rate models. Unem-

ployment and elder population had positive relation whereas female labour force and

PHE had negative relation with respective suicide rates. The only other significant

variable in either of the models was fertility rate which was only significant and had

negative relation in the male suicide rate model.

Yamamura (2010) analyzed the effects of socioeconomic factors on the suicide rate of

Japanese prefectures. Specifically, the research focused on the male, female and over-

all suicide rates of 47 prefecture of Japan consisting of years between 1988 and 2001.

Factors that were included were: Income growth rate, income per capita, unemploy-

ment rate, population turnover within prefecture, immigrants from other prefectures,

number of public baths, number of marriages, divorce rate, population, number of

members in households, alcohol consumption and birth rate. Three fixed effect longi-

tudinal data models were used for total, male and female suicide rates with the follow-

ing results: Income growth, alcohol consumption, population, population turnover,

divorce rate, marriages were significant for all three models where the growth rate

and marriages had decreasing effect on suicide rate while the other variables had in-

creasing effect. Immigrant variable was significant and positively associated with

overall and female suicide rate models only. Public baths and birth rate were signifi-

cant only for the female suicide rate model where public baths had decreasing while

birth rate had increasing effect on the suicide rate.

Barth et al. (2011) investigated the socioeconomic factors that could affect the suicide

rate of 18 countries in a 25 year period between 1983 and 2007. Those countries

were Austria, Belgium, Denmark, France, Finland, Germany, Greece, Ireland, Italy,

Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the

United Kingdom and the United States. Fixed effects and transition longitudinal data
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models were used with three separate dependent variables which include overall, male

and female suicide rates.Independent variables that were used in the models included:

GDP per capita, unemployment rate, divorce rate and labour force ratio. In the fixed

effect models: GDP was significant only for the overall suicide rate model and had

negative relation with the dependent variable. Divorce rate was significant only for

the female suicide rate model and had positive relation with the dependent variable.

In the transition models: GDP and labour force ratio were significant for the overall

suicide rate model and had negative and positive effect on the dependent variable

respectively.

Ross et al. (2012) analyzed the effects of mental health expenditures on the suicide

rate of US states between 1997 and 2005. For the analysis; suicide rate of two sexes

and two age groups have been selected as dependent variable. These four variables

were suicide rates of; all male, all female, males between 25-64 and females between

25-64. Predictor variables that were used income, mental health expenditures(MHE),

public welfare expenditure(PWE), public health expenditures(PHE), unemployment

rate, population density, divorce rate, migration rate, non white(Caucasian) popula-

tion, dummy variable to indicate whether the state is particularly mountainous called

mountain dummy and number of sunny days. Fixed effects and transition longitudinal

data models were used with four different dependent variables. Following results are

obtained from the fixed effect models: PHE was significant and had negative relation

in the both male suicide rate models. MHE was significant and had negative relation

in the both female suicide rate models. From the transition models following results

were obtained: mountain state dummy was significant and had positive relation with

dependent variable in all four models. Population density was significant and had

positive relation with all male suicide rate model only.

Kõlves et al. (2013) explored the effects of socioeconomic factors on the male and

female suicide rates of 13 Eastern European countries between 1990 and 2008. Main

focus of this paper was to explore the effects of the collapse of Soviet Union on the

social and economic factors of these countries and how those factors collectively af-

fected the suicide rate of both genders. Fixed effects longitudinal data model was used

where the dependent variables were the male and female suicide rates respectively.

Predictor variables include: unemployment rate, GDP per capita, alcohol consump-

5



tion, crude birth rate, general practitioners(GPs) per 100, 000 people, divorce rate,

female labour participation and gini index. From the two models following results

are obtained: Unemployment rate and GDP per capita were significant in both mod-

els but had positive and negative relation with dependent variable respectively. GPs

and birth rate were significant for only male suicide rate model and both of them

had negative relation. Gini index and alcohol consumption were significant for only

female suicide rate model but had positive and negative relations respectively.

Breuer (2014) explored the relation between economic factors and suicide rate of 275

regions from 29 European countries over a 12 year period between 1999 and 2010.

These countries include 25 of the EU-27 countries with the exception of Croatia and

Denmark, as well as Iceland, Norway, Switzerland and United Kingdom. This study

explores suicide rate with respect to both, gender and age where alongside overall sui-

cide rate, male and female suicide rate of population over and under 65 years old are

observed separately. Predictor variables used in the models include: unemployment

rate, fertility rates, gender and age specific life expectancy, heating degree days di-

vided by 365 which is used as a proxy for weather, GDP per capita and annual growth

rate of real Gross Value Added(GVA) which is used as a proxy for economic growth.

Several models were constructed for different age groups and genders. From those

models following results are obtained: Life expectancy was significantly and nega-

tively associated with suicide rate for all genders and age groups. Unemployment

was significant for overall and male suicide rates only and positively associated in

both cases. Economic growth was also significant for only overall and male suicide

rates but negatively associated in both cases. GDP per capita was significant only

for overall suicide rate and had negative effect on it. When the same models were

constructed for people over and under 65 years old following changes occurred: For

the people under 65, previously insignificant weather variable became significantly

and positively associated for both male and overall suicide rate. For people over 65,

the life expectancy variable was significantly and negatively associated for male and

female suicide rates whereas all the other variables were no longer significant for any

of the groups.

Machado et al. (2015) investigated the effects of socio-economic factors on the sui-

cide rate of both genders in 5,507 municipalities of Brazil in a 12 year period between

6



2000 and 2011. Primary focus among these factors was on the income inequality,

which was quantified by the Gini index of each municipality. Other factors were

education levels of individuals, income levels, urbanization rate, divorce rate and

religious affiliations which were grouped into three different categories. Negative bi-

nomial models with fixed effect specifications were used for the analysis which were

decided by conducting a Hausman test (Glen, 2020). From the results of the models,

it is found that Gini index, percentage of under educated people and two of the re-

ligious affiliations have positive and significant relationship with the overall suicide

rate. On the other hand; income, urbanization rate, divorce rate, mean amount of

resident and one of the religious affiliations has negative relationship with the overall

suicide rate. When we look at the effects of these factors on the suicide rate of each

gender, we saw that most of the results didn’t change. Most notable difference was on

the divorce rate where it was positively associated for men and negatively associated

for women.

Ferreira et al. (2019) explored the effects of economic factors on suicide rate of the

EU countries over a 24 year period between 1990 and 2013. There were multiple

models constructed using the suicide rate of two genders and two age groups as the

dependent variables. Independent variables in these models were public expenditures

on health(PEH), public expenditures on social welfare(PESW), unemployment, GDP

per capita, fertility rate, divorce rate and consumption of alcohol per capita. From

the first three models that modeled the male, female and overall suicide rate of all

age groups, following results are obtained: PESW, divorce rate and unemployment

were significant in all three models but PESW had a negative relation with the suicide

rate while other two variables had positive relation. GDP per capita was significant

for only the male suicide rate model and had negatively association. In the next four

models male and female suicide rates of people over and under 65 years old were used

as dependent variables. Results were overall similar with few differences: PESW and

unemployment rate were significant in all four models and had negative and positive

associations respectively. GDP per capita was significant in the young male and older

female suicide rate models with negative and positive relation respectively. Divorce

rate was positively related in all four models but was only significant for three of the

four models which excluded the older male suicide rate model. Previously insignif-
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icant in all three models, fertility rate was significant and had negative relation with

older female suicide rate.

Emamgholipour et al. (2021) examined social and economic factors related to the sui-

cide numbers of 30 provinces of Iran between 2001 and 2016. Factors that were used

were: Divorce, literacy, unemployment and urbanization rates, per capita income and

industrialization index. As a result of Hausman test, fixed effect model was chosen

when constructing the model. In the model, industrialization index was significant

only for male suicide number whereas all the other covariates were significant for

both genders. Urbanization rate was positively associated with female suicide num-

bers and negatively associated with male suicide numbers. Associations of all the

other variable were in the same direction for both genders where; unemployment rate

and divorce rate were positively related whereas household income and literacy rate

were negatively related.

After examining different studies which focused on span of different countries and

provinces’ suicide rate, this thesis aims to add to them by modelling all 81 provinces

of Turkey. Methodology of this thesis expands the standard longitudinal data mod-

elling methods and adds hybrid machine learning model which differs from the meth-

ods used in literature. In the next section, methodology of this thesis will be explained

in detail.
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CHAPTER 3

METHODOLOGY

In this section, techniques that were used to model the suicide rate of provinces of

Turkey as well as the comparison metrics used to compare the models are explained

in detail. This section will be divided into three sections which will explain the three

standard longitudinal data models and three hybrid data models as well as the com-

parison metrics for the models.

3.1 Longitudinal Data Models

Longitudinal data also known as the panel data, refers to the dataset consisting of

multiple subjects that are tracked across multiple time points. It encompasses the

attributes of two types of data in one, which are cross sectional data where multiple

subjects are shown in single time point and time series data where a single subject

is tracked across multiple time points. There are several different areas where the

longitudinal data is commonly used including; econometrics,epidemiology as well

as health and social sciences.There are three well known longitudinal data models

that will be used in this thesis which include the random effects models,fixed effects

models and transition models.

3.1.1 Random Effects Models

Random effects model allows model parameters to vary from one subject to another

which results in heterogeneity among individuals. The main difference between fixed

effects model and random effects model is that in random effects model, the omit-
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ted variables are uncorrelated with the independent variables whereas the omitted

variables in fixed effects model are correlated with the independent variables. Repre-

senting equation for the random effects models is the following:

Yit = β0 + β1X1it + β2X2it...+ βnXkit + b0i + b1iZ1it...+ bliZlit + εit

where

Yit represents the dependent variable where i=1,2,...,n indicates the subjects and t=1,2...ni

indicates the time,

Xit represents the independent variables and βit represents the coefficients of the

independent variables,

Zit is the subset of Xit while bi0 and bim represent the intercept and random coeffi-

cients where bi = (b1it, b2it...blit) ∼ N(0, D),

εit represents the error term where εit ∼ N(0, Ri), Ri = σ2In.

3.1.2 Fixed Effects Models

Fixed effects model is the most widely used model in the longitudinal data analysis.

The main premise behind these type of models is modelling the dependent variable as

a function of independent variables, while taking the within-subject correlation into

account. When choosing this type of model over the others, the goal is to compare

groups or subgroups rather than individuals. Fixed effects model are represented by

the following equation:

Yit = β0 + β1Xit,1 + β2Xit,2 + ...+ βp−1Xit,p−1 + εit

where

Yit represents the dependent variable where i indicates the subjects and t indicates the

time,

X represents the independent variables and β represents the coefficients of the inde-

pendent variables,
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ε represents the error term with the covariance matrix of Ri which can have several

different covariance structures including; autoregressive(AR), exchangeable, toeplitz

and unstructured structures.

3.1.3 Transition Models

Main premise behind the transition models is that the response at time t is modelled

depending on the responses at the previous time points and covariates at the current

time points. The aim of this approach is to learn from the previous observations.

We can also consider this model as a special case of fixed effect models in which it

includes the lag of the response, as well as the covariates, to the right hand side of

the model. If the model for the conditional mean is correctly specified, we can treat

repeated transitions for the subject as independent events and use standard statistical

methods It is important to remember however that unlike the previous models, data

needs to be balanced. Representing the formula for the model can be found below:

Yit = β0 + β1Xit,1 + β2Xit,2...+ βp−1Xit,p−1 + α1Yi,t−1...+ αkYi,t−k + εit

where

Yit represents the dependent variable where i indicates the subjects and t indicates the

time,

Xit represents the independent variables and βi represents the coefficients of the in-

dependent variables,

Yi,t−k represents dependent variables with k lag and αk represents the coefficients of

the lagged dependent variables,

εit represents the error term with the variance structure of an identity matrix.

11



3.2 Hybrid Machine Learning Models

In this thesis we made use of three hybrid machine learning models that were intro-

duced as a way to integrate tree regression methods into longitudinal data. One of

the key advantages of this integration is to bypass the assumptions that were required

by the standard longitudinal data models for the datasets. While most of the methods

that are utilized have similarities, details and differences of these methods will be

explained in this section.

3.2.1 Mixed Effect Regression Trees (MERT)

Hajjem et al. (2011) introduced the first hybrid method that we use in this thesis.The

main idea behind this approach is to calculate the fixed effect component using stan-

dard regression trees and calculate random effect component using linear mixed mod-

elling(LMM) for each node of the tree. A Classification and Regression Tree (CART)

algorithm was used when constructing the tree. Following equation can be used to

represent this method:

yit = f(Xi) + b1iZ1it...+ bliZlit + εit

where;

f(Xit) is the regression tree model that will be used estimate the fixed effects of the

model,

yit represents the dependent variable where i indicates the subjects and t indicates the

time,

Xit represents the independent variables,

Zit is the subset of Xit while bli represent the random coefficients where bli ∼ N(0, D).

εit represents the error term with the covariance matrix of Ri = σ2In.

The steps of the algorithm for the regression tree f(Xi) where r=1,2,... represents the

iteration number, can be described as following:
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1. Let r=1, b̂i = 0, D̂0 = Il and σ̂2
0 = 1

2. Let r=r+1, update y∗i(r), f̂(Xi)(r) and b̂i(r) = 0

• y∗i(r) = yi − Zib̂i(r−1) i=1,2,...,n

• Let f̂(Xi)(r) an estimate of f(Xi) obtained from a standard tree algorithm

with y∗i(r) as responses and Xi where i=1,2,...,n as covariates. Note that

the tree is built as usual using all n individuals as inputs along with their

covariate vectors.

• b̂i(r) = D̂(r−1)Z
T
i V̂

−1
i(r−1)(yi−f̂(Xi)(r)), i=1,2,...,n where V̂ −1

i(r−1) = ZiD̂(r−1)Z
T
i +

σ̂2
(r−1)Ini

, i = 1, 2, ..., n

3. Update σ̂2
(r) and D̂(r) using:

σ̂2
(r) = N−1

n∑
i=1

{ϵ̂Ti(r)ϵ̂i(r) + σ̂(r−1)[ni − σ̂(r−1)trace(V̂
−1
i(r−1))]}

D̂(r) = n−1

n∑
i=1

{b̂Ti(r)b̂i(r) + [D̂(r−1) − D̂(r−1)Z
T
i V̂

−1
i(r−1)ZiD̂(r−1)]}

where N =
∑n

i=1 ni.

4. Repeat steps 2 and 3 until convergence.

To describe the steps of the algorithm, it starts at step 1 with default values for random

effect values(b̂i), random effect variance (σ̂2), and random effect covariance structure

(D̂). At step 2, it first calculates the fixed step of the response variable, yi, which is the

response variable from which current available value of the random step is removed.

Second, the fixed component f̂(Xi) is estimated using a standard tree algorithm with

yi as responses and Xi as covariates. Third, b̂i is updated. At step 3, the variance

components (σ̂2) and (D̂) are updated based on the residuals after the estimated fixed

component f̂(Xi) is removed from the raw data yi . Iterations continue by repeating

steps 2 and 3 until convergence which is monitored by computing, at each iteration,

the following generalized log-likelihood (GLL) criterion:

GLL(f, bi|y) =
∑n

i {[yi − f(Xi)− Zibi]
TR−1

i [yi − f(Xi)− Zibi] + bTi D
−1bi + log|D|+ log|Ri|} (3.1)
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3.2.2 Mixed Effect Random Forest (MERF)

After introducing MERT, Hajjem et al. (2012) later expanded that method by replac-

ing regression trees in each iteration with random forests. This new approach has

been named mixed effect random forest(MERF).

yit = f(Xi) + b1iZ1it...+ bliZlit + εit

where;

f(Xi) is the random forest model that will be used estimate the fixed effects of the

model,

yit represents the dependent variable where i indicates the subjects and t indicates the

time,

Xi represents the independent variables,

Zit is the subset of Xit while bli represent random coefficients where bli ∼ N(0, D).

εit represents the error term with the covariance matrix of Ri = σ2In.

The steps of the algorithm for the regression tree f(Xi) where r=1,2,.. represents the

iteration number, can be described as following:

1. Let r=1, b̂i = 0, D̂0 = Il and σ̂2
0 = 1

2. Let r=r+1, update y∗i(r), f̂(Xi)n and b̂i(r)

• y∗i(r) = yi − Zib̂i(r−1) i=1,2....,n

• Build a random forest using a standard RF algorithm with y∗i(r) as the

training set responses and xi as the corresponding training set of covari-

ates i = 1, 2...., n and t = 1, 2, ...., ni. The bootstrap sampling method is

used to build the random forests.

• Estimate of f̂(xi)(r) is obtained using random forests.
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3. Update σ̂2
(r) and D̂(r) using:

σ̂2
(r) = N−1

n∑
i=1

{ϵ̂Ti(r)ϵ̂i(r) + σ̂(r−1)[ni − σ̂(r−1)trace(V̂
−1
j(r−1))]}

D̂(r) = n−1

n∑
i=1

{b̂Ti(r)b̂i(r) + [D̂(r−1) − D̂(r−1)Z
T
i V̂

−1
i(r−1)ZiD̂(r−1)]}

4. Repeat steps 2 and 3 until convergence.

To describe the steps of the algorithm, it starts with step 1 with default values for

random effect values(b̂i), random effect variance (σ̂2), and random effect covariance

structure (D̂). At step 2, it first calculates the fixed step of the response variable, yi,

which is the response variable from which current available value of the random step

is removed. Second, the algorithm uses bootstrap sampling method to build a random

forest. At step 3, variance components σ̂2 and D̂ are updated based on the updated

estimates of the residuals. The algorithm keeps iterating by repeating steps 2 and 3

until convergence which is monitored by computing, at each iteration, the following

generalized log-likelihood (GLL) criterion:

GLL(f, bi|y) =
∑n

i {[yi − f(Xi)− Zibi]
TR−1

i [yi − f(Xi)− Zibi] + bTi D
−1bi + log|D|+ log|Ri|} (3.2)

3.2.3 Regression Expectation Maximization Trees (RE-EM Trees)

Sela and Simonoff (2011) proposed another tree method that can be used to analyze

clustered and longitudinal data that is named random effects expectation maximiza-

tion trees (RE-EM Trees). Although this method was proposed independently from

the previous two methods, there are similarities between these methods. The repre-

senting equation is the same as the equation which is same as the equation used for

MERT model can be described as following:

yit = f(Xi) + b0i + b1iZ1it...+ bliZlit + εit

f(Xi) is the unknown regression tree model that will be used estimate the fixed effects

of the model,
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Yit represents the dependent variable where j indicates the subjects and t indicates the

time,

Zit is the subset of Xit while b0i and bli represent the random coefficients where

bli ∼ N(0, D),

εit represents the error term with the covariance matrix of Ri.

Similar to MERT, fixed effect and random effect equations are separated and calcu-

lated using regression tree and LMM methods respectively. The algorithm can be

summarised as following:

1. Random effects are to be initialised as b̂i = 0.

2. Steps 2a and 2b are to be iterated until the estimated random effects, b̂i, con-

verge.

(a) Regression tree approximating f is to be estimated , based on the target

variable, yit −Zitb̂i and attributes, xit = (xit1, xit2...xit(p−1)) for i=1,2,..,n

and t=1, 2, ...., ni. This regression tree is to be used to create a set of

indicator variables, N(xit ∈ gp), where gp ranges over all of the terminal

nodes in the tree.

(a) Linear mixed effects model, yit = Zitbi + N(xit ∈ gp)µp + ϵit is to be

fitted and b̂i is to be extracted from the estimated model.

3. Predicted response at each terminal node of the tree is to be replaced with the

estimated population level predicted response µ̂p from the linear mixed effects

model fit in 2b.

3.3 Comparison Metrics

After constructing all of the models, we are required to compare them in order to

determine the most accurate method for modelling the suicide rate. One of the two

metrics that we used to compare the final models of each method is the Root Mean

Square Error(RMSE) which is calculated by equation 3.3.
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RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.3)

Here yi and ŷi represent the observed and predicted values respectively where i =

1, 2, ...., n. This metric quantifies the accuracy by looking at the square root of the

average of the squared difference between the observed and predicted values.

Second metric that was used is the mean absolute error(MAE) which is calculated by

equation 3.4.

MAE =
1

n

n∑
i=1

|ŷi − yi| (3.4)

Here yi and ŷi represent the observed and predicted values respectively where i =

1, 2, ...., n. This metric quantifies the accuracy using the average of the absolute value

of differences between the observed and predicted values. Since RMSE takes the

square of the differences before square rooting, larger differences between the ob-

served and calculated values have much bigger influence on the calculated error than

the MAE (Willmott & Matsuura, 2005).
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CHAPTER 4

RESULTS

In this chapter, results of exploratory analysis as well as the results of all of the con-

structed models are explained in detail.

Data from the all 81 provinces of Turkey between 2012 and 2019. All of the data

is compiled from Turkish Statistical Institute (TURKSTAT) . The dependent variable

we used was the annual suicide rate of each province in the given timeline which was

calculated by dividing the suicide number of the given year by the population of the

country in the middle of the year. The predictor variables used in the model include

the following: Fertility rate, elderly dependency ratio, categorical variable to indicate

whether the given province is considered metropolitan or not, portion of hospitals to

population of province, portion of people who successfully earned a masters degree

or PhD to population of province, portion of people who are illiterate to population of

province, portion of unemployed people to population of province, portion of divorces

to population of province and GDP per capita of each province. These variables are

chosen because they were used in the similar models from the literature. While all the

variables are used in the initial models, additional models are also constructed using

only the significant variables obtained from the previous models. R programming

language was used for all of the models and all of the plots. R codes that were used

for this thesis can be found in the Appendix C.

4.1 Exploratory Analysis

For this analysis, we have obtained data from the all 81 provinces of Turkey between

2012 and 2019. The dependent variable we used was the annual suicide rate of each
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province in the given timeline which is calculated by dividing the suicide numbers

of the province at the end of the year to population at the middle of the year and

multiplying the result by 100,000. The predictor variables used in the model include

the following:

• Fertility Rate: Calculated by dividing the number of births in the province at

the end of the year to population of fertile(women aged between 15-44) in the

middle of the year and multiplying the result by 1000.

• Elderly Dependency Ratio: Calculated by dividing the elderly population(people

aged over 65+) at the end of the year in the province to working age(people aged

between 15-64) population at the end of the year in the province and multiply-

ing the result by 100.

• Metropolitan Variable: Categorical variable indicating whether the given province

is Metropolitan or not. Currently there are 30 metropolitan provinces which

were indicated by "1" by Metropolitan variable.

• Portion of Hospitals: Number of hospitals in the province divided by the pop-

ulation of the province at the end of the year and multiplying the result by

100,000.

• Portion of Higher Ed.: Calculated by dividing number of people who success-

fully earned a masters degree or PhD in the province to population of province

then multiplying the result by 1000.

• Portion of Dropouts: Calculated by dividing number of people who are illiterate

in the province to population of province then multiplying the result by 100.

• Portion of Unemployed: Calculated by dividing the population of unemployed

people to the total population and multiplying it by 100

• Portion of Divorces: Calculated by dividing the population of unemployed peo-

ple to the total population and multiplying it by 100.

• GDP per Capita: Gross Domestic Product of the province divided by its popu-

lation.
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These variables are chosen because they were used in the similar models from the

literature. While all the variables are used in the initial models, additional models are

also constructed using only the significant variables and variables that have higher

variable importance obtained from the initial models.

Table 4.1: Descriptive Statistics

Variable N Mean Median
Std.

Dev
Min

1st

Quar.

3rd

Quar.
Max

Suicide Rate 648 4.366 4.204 1.6 0 3.298 5.249 11.631

Fertility Rate 648 2.122 1.860 0.651 1.324 1.694 2.333 4.574

Elderly Dependency Ratio 648 14.348 14.648 4.794 4.209 10.923 17.374 29.163

Metropolitan:No 409

Metropolitan:Yes 239

Portion of Hospitals 648 2.403 2.2047 0.991 0.765 1.747 2.958 7.3

Portion of Higher Ed. 648 8.017 7.218 4.3 1.474 5.006 10.176 32.927

Portion of Dropouts 648 3.982 3.6421 1.861 0.865 2.382 5.378 9.025

Portion of Unemp. 648 3.991 3.670 1.54 1.693 3.038 4.509 15.735

Portion of Divorces 648 1.373 1.4269 0.629 0.112 0.98 1.83 2.954

GDP per Capita 648 8.37 7.866 3.045 2.946 6.26 9.827 20.883

From Table 4.1, we can see that minimum suicide rate is 0, which is obtained from

province of Bayburt. The reason for the 0 suicide rate is because this province had

0 suicides in both 2017 and 2019. Highest suicide rate of 11.631 is observed in the

province of Tunceli. While this number may seem high, it is important to remember

that Tunceli is one of the least populated provinces in the country, and therefore even

a small number of suicides creates high suicide rates compared to the more populated

provinces. Since the mean and median are close for the most of the variables, it

can be interpreted that the majority of the variables shows symmetric distribution.

Since there are 30 metropolitan cities in Turkey, we would expect the number of

metropolitan indicator variables to be 240 in an 8 year period. However, since the

province of Ordu only became metropolitan in 2013, and since our data contains the

period between 2012 and 2019, the metropolitan variable is split as 409 to 239.
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Figure 4.1: Boxplots of suicide rates of each year

From Figure 4.1, we can see the boxplots of suicide rates of all provinces in each year.

From the shapes of each boxplots we can infer that the majority of them don’t have

normal distribution. In order to confirm this, Shapiro-Wilk test has been performed

on the each year’s suicide rate.

Table 4.2: Shapiro Wilk Normality Test Results of each year

Year W Statistic p-value

2012 0.971 0.067

2013 0.973 0.082

2014 0.942 0.001

2015 0.983 0.369

2016 0.939 0.001

2017 0.956 0.007

2018 0.958 0.009

2019 0.985 0.478

Normality assumption is required for the panel data models that we will apply, so it

is important to check each year of the dependent variable for normality. From the
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histogram plots in Figure 4.1 we can see that the both 2015 and 2019 have normal

distribution which is confirmed with normality tests. However majority of the years

don’t satisfy the normality condition, therefore it is required to apply transformations

to the dependent variable.

For transformation, number of different methods are tried, but unfortunately none of

them satisfy the normality conditions for all of the years. The satisfactory method

that worked for the majority of the years can be found in Equation 4.1.

y(λ) =
√
λ+ 1 (4.1)

After the transformation Shapiro Wilks normality test performed again, and results

are given in Table 4.3.

Table 4.3: Shapiro Wilk Normality Test Results after transformation

Year W Statistic p-value

2012 0.988 0.668

2013 0.984 0.421

2014 0.974 0.0952

2015 0.988 0.696

2016 0.977 0.167

2017 0.957 0.008

2018 0.982 0.313

2019 0.979 0.223

From Table 4.3 it can be seen that all years except 2017 satisfy the normality condi-

tions. As mentioned while this method doesn’t transform all of the years it can still

be considered satisfactory.

After transformation, the pairwise correlations between variables which are shown

in Table A.1 in Appendix A, are observed to make an initial assessment about the

relations between the variables. From these observations, we can see that divorce

variable(Portion of Divorce) has the highest correlation with the suicide rate followed

by portion of hospitals and elderly dependency ratio. It is important to note however,
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these correlations are rather small with the highest being around 0.21. Other high

correlations that can be observed are the illiterate population that has high negative

correlation with divorce rate and high positive correlation with fertility rate. This

indicates that the under educated population tend to have more children while also

having fewer divorces.

Table 4.4: Temporal Correlations of Suicide Rate

2012 2013 2014 2015 2016 2017 2018 2019

2012 1 0.277 0.304 0.334 0.349 0.286 0.319 0.361

2013 0.277 1 0.361 0.604 0.623 0.581 0.455 0.569

2014 0.303 0.361 1 0.542 0.525 0.415 0.344 0.381

2015 0.334 0.604 0.542 1 0.541 0.469 0.443 0.435

2016 0.349 0.623 0.525 0.541 1 0.615 0.532 0.646

2017 0.286 0.581 0.415 0.469 0.615 1 0.562 0.583

2018 0.319 0.455 0.344 0.442 0.532 0.562 1 0.498

2019 0.361 0.569 0.381 0.435 0.646 0.583 0.498 1

Table 4.4 shows the correlation structure of the suicide rate across all of the given

years. From Table it can be observed that, there is no specific correlation structure,

which will be important when constructing the models.

4.2 Standard Longitudinal Data Models

In the first part of the modelling process, we used three of the most commonly used

longitudinal data models which included the fixed effect(marginal) model, random

effect model and transition model. For each method we started by constructing a

model using all of the variables then refine the model until only significant variables

remained.

24



4.2.1 Random Effect Models

We started the modelling with random effect model. Initial model was constructed us-

ing all of the covariates. After constructing the model, variance inflation factors(VIF)

of the variables are observed in order to detect any possible multicollinearity in the

model.

Table 4.5: VIF values of the each variable in the random effect model

Variables VIF

Year 7.74

GDP per Capita 3.02

Portion of Hospitals 1.72

Portion of Divorces 2.32

Elderly Dependency Ratio 3.09

Metropolitan 1.51

Portion of Unemployment 1.45

Portion of Highly Educated 4.43

Portion of Illiterate 4.65

Fertility Rate 3.86

From Table 4.5 we can see that all of the VIF values are quite small and therefore we

can confirm that there is no multicollinearity problem in the model. After constructing

the model, it has been confirmed that only the divorce,hospital and GDP variables are

significant at the %95 confidence level. Then the next model was constructed using

the significant variables.

Table 4.6: Results of the Random Effect Model with significant variables

Coefficients Estimate Std. Err. P value

Intercept 1.941 0.076 2x10−16

Portion of divorces 0.139 0.039 0.001

Portion of hospitals 0.087 0.024 0.001

GDP per capita -0.006 0.007 0.378
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Second model indicates that only hospital and divorce variables are significant and

have increasing effect on suicide rate, whereas GDP per capita is not significant and

therefore excluded in the next model.

Table 4.7: Results of the Final Random Effect Model

Coefficients Estimate Std. Err. P value

Intercept 1.908 0.084 2x10−16

Portion of divorces 0.127 0.037 0.001

Portion of hospitals 0.085 0.024 0.001

From Table 4.7 it can be seen that both variables are highly significant and therefore

this model can be considered to be the final.

ˆTSRit = 1.908 + 0.127PoDit + 0.085PoHit + b̂i (4.2)

where TSR refers to the transformed suicide rate which is calculated using Equation

4.2. PoD and PoH represent suicide rate,portion of divorces and portion of hospitals

respectively. From Equation we can infer that both divorce and hospital proportions

have increasing effect on the suicide rate. In the event where both covariates are

zero, we can see that suicide rate would be positive with the value around 1.91. This

indicates that at any time and in every province without any hospitals and divorces,

suicide rate would still be positive and significant.
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Figure 4.2: Box-plots of Standardized Residuals of Random Effect Model in each
year

From the Figure 4.2 it can be seen that while there are few outliers in the several

years, there is no particular pattern that would indicate a bad fit for our model. From

Table B.1 in the Appendix B we can see that residuals from all but the year 2016 are

normally distributed.

Figure 4.3: Random effect model fitted values vs true values
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From the figure 4.3 it can be seen that the scatterplot of the response shows a de-

cent fit with small discrepancies and shows increasing trend. Root mean squared

error(RMSE) is calculated as 1.097.

4.2.2 Fixed Effect Model

Second model that we used from the standard longitudinal data models was the fixed

effect model. From the exploratory analysis we determined that the correlation struc-

ture of the dependent variable doesn’t resemble a predefined structure, therefore when

constructing the model unstructured correlation structure was used as a first choice.

Few other correlation structures such as AR(1) and exchangeable correlation struc-

tures were also used for comparison purposes. Similar to the random effect model,

all of the covariates were included in the initial model. From the results of the model

we found that only; GDP per capita,portion of hospitals and portion of divorces vari-

ables were significant. Using only these variables we reconstructed the model with

different correlation structure. Results for these models are given in Tables 4.8-4.10 .

Table 4.8: Results of the Fixed Effect Model for unstructured correlation structure

Coefficients Estimate Std. Err. P value

Intercept 1.969 0.079 2x10−16

Portion of Divorce 0.084 0.027 0.001

Portion of hospitals 0.138 0.039 0.001

GDP per Capita -0.007 0.005 0.177

Table 4.9: Results of the Fixed Effect Model for AR(1) Correlation Structure

Coefficients Estimate Std. Err. P value

Intercept 1.965 0.095 2x10−16

Portion of Divorce 0.093 0.033 0.004

Portion of hospitals 0.143 0.045 0.001

GDP per Capita -0.011 0.007 0.157
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Table 4.10: Results of the Fixed Effect Model for Exchangeable Correlation Structure

Coefficients Estimate Std. Err. P value

Intercept 1.944 0.091 2x10−16

Portion of Divorce 0.0861 0.031 0.006

Portion of hospitals 0.139 0.039 0.001

GDP per Capita -0.006 0.006 0.278

Comparing all of the results with different correlation structures, we can see that there

isn’t a significant difference between standard errors or the coefficient estimates. We

also used quasi information criterion (QIC) to compare the three models which gave

665, 670 and 671 for unstructured, AR(1) and exchangeable correlation structures

respectively. From these results it can be seen that the unstructured correlation struc-

tures performs slightly better than the others and thus it is chosen for the fixed effect

model.

Table 4.11: Results of the Final Fixed Effect Model

Coefficients Estimate Std. Err. P value

Intercept 1.928 0.076 2x10−16

Portion of divorces 0.126 0.036 0.001

Portion of hospitals 0.081 0.028 0.003

Similar to the random effect model, GDP variable while significant in the model

with all of the covariates, is no longer significant in the newer models. Therefore,

in the final constructed model only the portion of divorce and portion of hospitals

are included. From Table 4.11 we can confirm that both of the remaining covariates

remain highly significant in the final model.

ˆTSRit = 1.928 + 0.126PoDit + 0.081PoHit (4.3)

From Equation 4.3 we can see that where both the divorce and hospital variable have

an increasing effect on the suicide rate. From the positive intercept value, we can infer
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that in an event where both covariates are zero, we can see that suicide rate would be

positive with the value around 1.93.

Figure 4.4: Box-plots of Standardized Residuals of Fixed Effects Model in each year

After parameter estimation, the residuals of the model are examined over time for

possible patterns and outliers. From Figure 4.4 it can be seen that the residuals do

not fluctuate much over time and have only few outliers in several years. Tale B.2

confirms that the residuals have normal distribution each year.
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Figure 4.5: Fixed effect model fitted values vs true values

Figure 4.5 shows the scatterplot of the response values and the fitted values of the

final fixed effect model. Plot shows some discrepancy between observed and fitted,

in the sense that model predicts most of the suicide rates between 3 and 6.

4.2.3 Transition Models

Last of the three standard longitudinal data models that was used was the transition

models. Different than the previous models, before constructing the model, the re-

sponse variable was separated into two variables which included itself and its one

year lagged version. Afterwards the model constructed similar to the fixed effect

model but included the lag 1 of the dependent variable as a covariate. Unlike the pre-

vious models only the divorce variable was significant in this model alongside with

the lagged suicide rate variable. Therefore the next model was constructed using only

these variables.
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Table 4.12: Results of the Transition Model

Coefficients Estimate Std. Err. P value

Intercept 1.128 0.134 2x10−16

Suicide Rate Lagged 1 0.461 0.063 2.3x10−13

Portion of divorces 0.075 0.027 0.005

From Table 4.13 it can be seen that all the variables are still significant and therefore

we can consider this model to be the final model for the transition model.

ˆTSRit = 1.128 + 0.461TSRi(t−1) + 0.075PoDit (4.4)

From Equation 4.4, we can see that the lagged Suicide rate variable has increasing

effect on the suicide rate which is expected. Similar to the previous models divorce

rate also has an increasing effect with the coefficient of 0.075 on the suicide rate.

In the event where both covariates are zero, we can see that suicide rate would be

positive with the value around 1.128. This indicates that at any time and in every

province without any divorces, suicide rate would still be positive and significant.

Figure 4.6: Box-plots of Standardized Residuals of Transition Model in each year
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From the Figure 4.6 it can be seen that the residuals fluctuate slightly more than the

previous two models. Also from the plots we can observe that some of the years don’t

have a normal distribution which we can also confirm from Table B.3. While these

differences may affect the overall fit of the model, since there aren’t many outliers

and drastic fluctuations, the effects won’t be significant.

Figure 4.7: Transition model fitted values vs true values

From the Figure 4.7 it can be seen that the scatterplot of the response shows a decent

fit which was quantified by calculating root mean squared error(RMSE) as 1.40.

4.3 Hybrid Methods

For the second part of the modelling, we proceeded to form the models which com-

bined the standard longitudinal data models with machine learning methods. The

methods that we used in this section included Mixed Effect Regression Trees(MERT),Mixed

Effect Random Forest(MERF) and Random Effect -Expectation Maximization Trees(RE-

EM Trees) methods. Similar to the standard models, the modelling process for each

of the model was done by constructing an initial model which included all of the vari-

ables and then refining that model by choosing variables by looking at the variable

importance values.
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4.3.1 MERT Model

After constructing the three standard longitudinal data models, we then proceeded

to the hybrid data models that combine the longitudinal data methods with the ma-

chine learning methods. First method that was used was the Mixed Effect Regression

Trees(MERT) method. Similar to the previous models we used all of the variables in

the first model. After building this model variable importance of each variable were

obtained from the regression tree in the model. Based on the results from Table 4.13,

two more models were constructed.

Table 4.13: Variable Importance of the Regression Tree in MERT Model

Variables Variable Importance

Portion of Divorces 8.628

Portion of Hospitals 8.251

Elderly Dependency Ratio 7.061

Portion of Dropout 5.679

Fertility Rate 5.022

GDP per Capita 3.445

Portion of Highly Educated 3.098

Metropolitan 2.469

Portion of Unemployment 0.409

Next model was constructed using the variables with the highest importance values

which include elderly dependency ratio,hospital and divorce variables. Third model

was constructed using all but the unemployment variable which has a significantly

less variable importance compared to the other variables.

Table 4.14: Comparison of the three MERT Models

MERT.1 MERT.2 MERT.3

RMSE 0.999 1.009 1.019

RESD 0.146 0.159 0.154
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From Table 4.14 we can see the comparison of the three MERT models where MERT.1

represents the model with all of the variables, MERT.2 represents the model with

divorce,hospital and elderly dependency ratio variables and MERT.3 represents the

model with all variables except the unemployment variable. Since the first model

has both the smallest root mean squared error(RMSE) and smallest random effect

standard deviation(RESD) it was selected.

Figure 4.8: Box-plots of Standardized Residuals of MERT Model in each year

Boxed plots of each year for the MERT model can be seen in the Figure 4.8. Like the

rest of the residuals models we don’t detect any pattern or significant outliers from the

plots. From the plots we can see that residuals at each year has normal distribution

which we can confirm from Table B.4.
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Figure 4.9: MERT model fitted values vs true values

In the Figure 4.9 the fit of the MERT model can be seen. Several of the suicide rate

values between 6 and 10 are all predicted as 8 by the model which shows a line like

pattern. This may be due to majority of the observations being clustered between 2

and 6 which caused the model to predict larger values inaccurately. RMSE has been

calculated approximately as 0.99 which can also be seen in Table 4.14.

4.3.2 MERF Model

Second hybrid method that was used was to continuation of the MERT model which

is mixed effect random forest(MERF) model. Similar to the MERT model, an initial

model that included all of the variables are constructed and importance of variables

are calculated from the random forest part of the model. Variable importance of

covariates are calculated by mean decrease accuracy (%IncMSE) which shows how

much model accuracy decreases if given variable is left out. Other parameter for

calculating variable importance is the Mean Decrease Gini (IncNodePurity) which is

defined as the decrease in node impurities from splitting on the variable, averaged

over all trees.(Han et al., 2016)
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Table 4.15: Importance of variables in the Random Forest part of the MERF Model

Variables %IncMSE IncNodePurity

Portion of Hospitals 20.351 7.492

Portion of Divorces 18.866 6.159

Fertility Rate 18.246 5.374

Portion of Dropout 17.959 5.403

Elderly Dependency Ratio 14.768 4.751

GDP per capita 12.477 4.577

Portion of Highly Educated 11.927 4.525

Metropolitan 5.959 0.407

Portion of Unemployment 5.373 4.217

It is important to note that since MERF method uses random forests, values on Table

4.15 as well as their order can change. After running this model for multiple itera-

tions, we observed that the importance of Metropolitan and unemployment variables

stay lower than rest of the variables. In contrast, divorce, hospital,illiterate variables

as well as fertility rate had consistently high importance values. Therefore for the

next two models we constructed we took these observations into account. The second

model was constructed using only the variables with the highest importance values

which included divorce, hospital,illiterate variables and fertility rate. The third model

was constructed by removing the variables with the lowest importance values which

were metropolitan and unemployment variables.

Table 4.16: Comparison of the three MERF Models

MERF.1 MERF.2 MERF.3

RMSE 0.519 0.559 0.516

RESD 0.152 0.155 0.146

In Table 4.16 we can see the three models where MERF.1 represent the model with all

variables included, MERF.2 represents the model with the divorce, hospital,illiterate

variables and fertility rate variables and MERF.3 represents the model with all vari-
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ables except metropolitan and unemployment variables as predictors. From Table

4.16 it can be seen that the third model has both the least RMSE and the least RESD

values therefore it is chosen.

Figure 4.10: Mean square error (MSE) vs number of trees in the random forest part
of MERF model

Plot of the MSE with respect to the number of trees in the random forest is given

in the Figure 4.10. For our model we used the default tree number of 500 from the

function MERF which is included in the LongituRF package in R. We can see from

the figure 4.10 however, that the error values converge after 200 trees so more trees

than that amount wouldn’t improve our model significantly.
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Figure 4.11: Box-plots of Standardized Residuals of MERF Model in each year

Similar to the previous methods, residual boxplots of the MERF model is checked

and while there are more outliers than the previous models, their effects to the overall

fit is not significant. From the plots we can see that residuals at each year are not all

normally distributed which can also be confirmed by Table B.5.

Figure 4.12: MERF model fitted values vs true values
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Figure 4.12 shows the plot of the fit for the MERF model. From both the plot and the

RMSE value from Table 4.15 we can consider this plot to be a good fit.

4.3.3 RE-EM Trees Model

The last model that was used in this thesis was the Random effects-Expectation

maximization(RE-EM) tree model. Similar to the MERT method we first created

a model with all of the variables then observed the variable importance values of the

regression tree in the RE-EM Tree method.

Table 4.17: Variable Importance of the Regression Tree in RE-EM Tree Model

Variables Variable Importance

Portion of Hospitals 5.227

Portion of Dropout 4.512

Portion of Divorces 4.429

Fertility Rate 3.214

Elderly Dependency Ratio 2.952

Metropolitan 2.558

GDP per Capita 1.944

Portion of Highly Educated 1.822

Portion of Unemployment 0.031

After constructing the first model and analyzed the variable importance in the model,

we then proceeded to construct the next models. From Table 4.17 it can be seen that

the variable importance of the hospital,divorce and illiterate variables are higher than

the rest of the variables. Therefore the second model has been constructed using only

these variables. Also from Table 4.17 it can be seen that unemployment variable has

significantly less variable importance compared to the other variables. Thus in the

third model we used all of the variables but excluded the unemployment variable.
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Table 4.18: Comparison of the three REEM-Tree Models

REEM.1 REEM.2 REEM.3

RMSE 1.026 1.034 1.022

RESD 0.175 0.189 0.174

Table 4.18 shows the three RE-EM Tree models we constructed where REEM.1 rep-

resent the model with all of the variables, REEM.2 represents the model with hospi-

tal,divorce and illiterate variables and REEM.3 represents the model with all but the

unemployment variables respectively. Since it results in the lowest RMSE and lowest

RESD values, REEM.3 model was used as the RE-EM Tree model. Decision tree

from the selected model can be found in the Appendix C.

After deciding the model, we then constructed the resulting regression tree to get a

better understanding of how the variables are used how the fitted values are calculated.

Figure 4.13: Box-plots of Standardized residuals of RE-EM Tree model over time

The residual boxplots of the RE-EM Tree model for each year is given in Figure 4.13.

The plots show no discernible pattern or concerning outliers. The distributions all

seem to be normally distributed which can be confirmed by the results from Table
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B.6.

Figure 4.14: RE-EM Tree model fitted values vs true values

Fitted values of the RE-EM Tree model can be seen in the Figure 4.14. Resulting

RMSE from the model is around 1.03 thus both this value and the plot indicates a

good fit.

4.4 Model Comparisons and Discussion

After constructing all of the models and obtaining the results, we proceeded to com-

pare these results by considering few different categories. First and foremost the

accuracy of each model is compared using the root mean squared error(RMSE) and

mean absolute error(MAE) metric. We can also compare the models in terms of com-

plexity and computational demand if their accuracies aren’t significantly different.

Table 4.19: Comparison Metrics for all models

Fixed Effects Random Effects Transition MERF MERT REEM-Tree

RMSE 1.535 1.097 1.396 0.512 0.999 1.034

MAE 1.157 0.811 1.030 0.366 0.755 0.778
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From Table 4.19 we can see the RMSE and MAE values for each of the final models

that were constructed. While random effects model has the lowest values among the

standard longitudinal data models, MERF model has the lowest values overall. RE-

EM tree model and MERT models have similar error rates with RE-EM tree model

having slightly higher values for both metrics.

Table 4.20: Correlations between the predicted suicide rate and actual suicide rate
values for each model

Methods Correlation

Random Effect 0.734

Fixed Effect 0.284

Transition 0.494

MERT 0.781

MERF 0.964

RE-EM Tree 0.766

Another comparison method for the models is to look at the correlation values be-

tween the predicted and actual values of the dependent variable for the each model.

In Table 4.20 we can see those values for all of the models. MERF model has the

highest correlation value which indicates the best fit among all of the models whereas

the fixed effect model gives the smallest correlation value which indicates the worst

fit among all of the models.

After concluding MERF to be the best model, we observed the results for some of

the provinces that is given by this model. Tables 4.21 - 4.24 shows the actual and

predicted yearly results for four different provinces. Overall the difference between

actual and predicted values decrease when the actual values are between 2 and 5.
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Table 4.21: Comparison of Actual Values with Predicted Values for Bayburt Province

Year Actual Predicted Difference

2012 5.245 4.0218 1.223

2013 2.645 2.818 0.177

2014 1.280 1.759 0.479

2015 2.514 2.355 0.159

2016 1.187 1.516 0.331

2017 0.000 0.924 0.924

2018 3.690 2.467 1.223

2019 0.000 0.759 0.759

Table 4.22: Comparison of Actual Values with Predicted Values for Trabzon Province

Year Actual Predicted Difference

2012 2.776 3.014 0.242

2013 4.485 4.183 0.302

2014 4.983 4.421 0.562

2015 3.648 3.875 0.227

2016 4.006 3.953 0.053

2017 4.725 4.126 0.599

2018 3.136 3.199 0.063

2019 1.608 2.476 0.868
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Table 4.23: Comparison of Actual Values with Predicted Values for Konya Province

Year Actual Predicted Difference

2012 3.911 3.951 0.040

2013 3.921 4.158 0.237

2014 3.677 3.919 0.241

2015 4.859 4.575 0.283

2016 4.287 4.232 0.055

2017 4.007 4.137 0.129

2018 4.423 4.341 0.082

2019 4.641 4.433 0.208

Table 4.24: Comparison of Actual Values with Predicted Values for Istanbul Province

Year Actual Predicted Difference

2012 3.944 3.689 0.255

2013 3.526 3.470 0.055

2014 3.125 3.230 0.105

2015 2.975 3.157 0.181

2016 3.136 3.142 0.006

2017 3.378 3.327 0.051

2018 3.674 3.553 0.121

2019 2.739 3.255 0.514
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CHAPTER 5

CONCLUSION

Suicide remains to be an important public health and social concern in the numerous

countries around the world. To address this issue it is important to determine the

factors that may impact on the suicide rate. Research from the various fields through-

out history show that the socio-economic factors of the countries,states and provinces

have significant effects on the suicide rate. Therefore determining the possible rela-

tions between these factors and the suicide rate is important in order to address these

issue of suicide.

To analyze all 81 provinces in a 8 year period between 2012 and 2019, longitudinal

data methods were utilized in this thesis. Those models can be separated in two cat-

egories; standard longitudinal data models which include fixed effect,random effect

and transition models. Second category is the hybrid machine learning models which

include: Mixed effect regression tree(MERT) model, mixed effect random forest

model(MERF), random effect-expectation maximization tree(RE-EM) tree method.

The predictor variables that were selected among different socio-economic factors in-

clude: Fertility rate, elderly dependency ratio, categorical variable to indicate whether

the given province is considered metropolitan or not,portion of hospitals to popula-

tion of province,portion of people who successfully earned a masters degree or PhD to

population of province,portion of people who are illiterate to population of province,

portion of unemployed people to population of province,portion of divorces to popu-

lation of province and GDP per capita of each province.

We started analysis by using the standard longitudinal data models. For the fixed

effect and random effect models our final model, after removing non significant pre-
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dictors, included only two variables which were portion of divorces and portion of

hospitals. In the transition model we found out that only the divorce variable was sig-

nificant aside from the lagged variable. Among these models, random effect model

performed significantly better than the rest which was verified by RMSE and MAE

metrics as well as the fitted vs predicted values plots.

In the next part we constructed the hybrid models for the analysis. For the MERT

model, we used the model that uses all of the variables. For the MERF model, we

used the model which had the metropolitan and unemployment variables removed due

to those variables having significantly lower variable importance values than the rest

of the variables. Similar choice was made for RE-EM tree model where the selected

model had all but the unemployment variable due to it having the lowest variable

importance. Among these models MERT and RE-EM Tree methods performed sim-

ilarly which is expected due to the similar methods used in constructing the models.

MERF model on the other hand, performed significantly better than both of the hybrid

methods as well as all of the other methods.

For the future studies, several other variables can be added to the longitudinal models

that couldn’t be obtained in this thesis. Those variables include the alcohol con-

sumption and substance use, meteorological data such as average temperature and

humidity, and the usage of the prescription drugs specifically the ones diagnosed for

mental health problems. Hopefully this study can help in identifying possible factors

affecting the suicide rate in order for the government to address and help solve these

problems.
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Appendix A

CORRELATIONS BETWEEN NUMERIC VARIABLES

Table A.1: Correlations between numeric variables

Suicide Rate Fertility Rate Elderly Dependency Ratio Portion of Hospitals Portion of Higher Ed. Portion of Illiterate Portion of Unemployment Portion of Divorces GDP per capita

Suicide Rate 1 -0.1200019 0.1325913 0.14632854 0.053093573 -0.06825326 -0.010308803 0.21327797 0.07310548

Fertility Rate -0.1200019 1 -0.7519023 -0.37417021 -0.540294057 0.65583691 0.105704649 -0.65545983 -0.51938498

Elderly Dependency Ratio 0.1325913 -0.7519023 1 0.59422072 0.264572171 -0.31431380 -0.108249465 0.34736502 0.13201029

Portion of Hospitals 0.14632854 -0.37417021 0.59422072 1 0.03115720 0.10420927 -0.05516149 -0.05565176 0.04614689

Portion of Higher Ed. 0.053093573 -0.540294057 0.264572171 0.03115720 1 -0.598990743 -0.008609472 0.513269142 0.431380778

Portion of Illiterate -0.06825326 0.65583691 -0.31431380 0.10420927 -0.598990743 1 0.13077419 -0.79168853 -0.60134531

Portion of Unemployment -0.010308803 0.105704649 -0.108249465 -0.05516149 -0.008609472 0.13077419 1 -0.239548197 -0.310927396

Portion of Divorces 0.21327797 -0.65545983 0.34736502 -0.05565176 0.513269142 -0.79168853 -0.239548197 1 0.63045893

GDP per capita 0.07310548 -0.51938498 0.13201029 0.04614689 0.431380778 -0.60134531 -0.310927396 0.63045893 1
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Appendix B

NORMALITY TEST TABLES FOR RESIDUALS

Table B.1: Shapiro Wilk Normality Test Results for Random Effect Model Residuals

Year W Statistic p-value

2012 0.983 0.375

2013 0.989 0.772

2014 0.971 0.066

2015 0.985 0.468

2016 0.959 0.033

2017 0.978 0.608

2018 0.945 0.230

2019 0.852 0.061

Table B.2: Shapiro Wilk Normality Test Results for Fixed Effect Model Residuals

Year W Statistic p-value

2012 0.974 0.104

2013 0.995 0.993

2014 0.989 0.741

2015 0.979 0.207

2016 0.978 0.294

2017 0.961 0.177

2018 0.935 0.143

2019 0.941 0.563
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Table B.3: Shapiro Wilk Normality Test Results for Transition Model Residuals

Year W Statistic p-value

2013 0.989 0.749

2014 0.982 0.301

2015 0.972 0.075

2016 0.964 0.024

2017 0.948 0.034

2018 0.960 0.373

2019 0.958 0.741

Table B.4: Shapiro Wilk Normality Test Results for MERT Model Residuals

Year W Statistic p-value

2012 0.985 0.438

2013 0.996 0.996

2014 0.986 0.519

2015 0.983 0.359

2016 0.990 0.895

2017 0.958 0.149

2018 0.961 0.481

2019 0.886 0.155
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Table B.5: Shapiro Wilk Normality Test Results for MERF Model Residuals

Year W Statistic p-value

2012 0.982 0.294

2013 0.989 0.702

2014 0.947 0.002

2015 0.944 0.001

2016 0.955 0.020

2017 0.979 0.688

2018 0.931 0.112

2019 0.826 0.029

Table B.6: Shapiro Wilk Normality Test Results for RE-EM Tree Model Residuals

Year W Statistic p-value

2012 0.982 0.314

2013 0.987 0.599

2014 0.983 0.369

2015 0.988 0.633

2016 0.974 0.205

2017 0.970 0.373

2018 0.932 0.123

2019 0.923 0.386

55



56



Appendix C

R CODES

library(vtable)

library(gplots)

library(car)

library(forecast)

summs=colnames(Paneldata3)[ (1:2)]

summarytable=st(Paneldata3,out="return",vars = summs)

summarytable

Histograms

par(mfrow=c(2,4))

shapirosp=vector()

shapirosw=vector()

suispeeds=vector()

preBoxed=list()

for(i in 0:7)

n=2012

year=as.character(n+i)

xlabel=paste("Suicide Rate in",year)

hist(Paneldata2[Paneldata2 Year==n+i,]SuicideRate,

xlab=xlabel,main="",label=T)

preBoxed=

lappend(preBoxed,Paneldata3[Paneldata3 Year==2012+i,]
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SuicideRate)

shap=shapiro.test(Paneldata2[Paneldata2 Year==n+i,]

SuicideRate)

shapirosp=append(shapirosp,shap[[2]])

shapirosw=append(shapirosw,shap[[1]])

suispeeds=cbind

(suispeeds,Paneldata2[Paneldata2 Year==n+i,]SuicideRate)

Normality Tests

Year=c(2012:2019)

normaltable=data.frame(cbind(Year,shapirosw,shapirosp))

rownames(normaltable)=NULL

colnames(normaltable)=c("Year","W Statistic","p value")

normaltable

Transformation for normality

Boxcox = function (data)

return(sqrt(data+1))

revboxcox= function (data)

return((data 2) 1)

boxed=lapply(preBoxed,Boxcox)

boxshap=lapply(boxed,shapiro.test)

shapirosbp=vector()

shapirosbw=vector()

par(mfrow=c(2,4))
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for(i in 0:7)

n=2012

year=as.character(n+i)

xlabel=paste("Suicide Rate in",year)

hist(boxed[[i+1]],xlab=xlabel,main="")

shapirosbp=append(shapirosbp,boxshap[[i+1]][[2]][[1]])

shapirosbw=append(shapirosbw,boxshap[[i+1]][[1]][[1]])

suispeeds=cbind(suispeeds,boxed[[i+1]])

Normality Tests after transformation

Year=c(2012:2019)

normaltable=data.frame(cbind(Year,shapirosbw,shapirosbp))

rownames(normaltable)=NULL

colnames(normaltable)=c("Year","W Statistic","p value")

normaltable

Correlation

boxeddf=data.frame(boxed)

colnames(boxeddf)=Year

yearcorrs=cor(boxeddf)

boxeddf2=data.frame

(newcol = c(t(boxeddf)), stringsAsFactors=FALSE)

Paneldata4=Paneldata3

Paneldata4SuicideRate=boxeddf2newcol

yearcorrs=cor(boxeddf)

covcorrs=cor(Paneldata4[ , c(1,2,6)])

covcovs=cov(Paneldata4[ , c(1,2,6)])

covcorrs

covcovs

yearcorrs

Scatterplot
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par(mfrow=c(1,1))

scatter.smooth(Paneldata3Year,

Paneldata3SuicideRate,

main="Scatterplot of Crude Suicide Rate versus Year",

xlab="Year",ylab="Suicide Rate",xaxt= n )

axis(side = 1, at=2012:2019)

Heterogenity Plots

plotmeans(SuicideRate Year,

main="Heterogeineity across years",

data=Paneldata3)

library(gee)

library(plm)

library(lme4)

library(REEMtree)

library(MuMIn)

library(panelr)

library(Metrics)

library(geepack)

library(MixRF)

library(LongituRF)

library(lmerTest)

library(car)

library(rpart.plot)

Marginal Models

Unstructured correlation

marunst=geeglm(SuicideRate Year+

GDP Per Capita Th+FertilityRate+

OldAgeDependencyRatio+Metropolitan+
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PortionofDivorces+PortionofHospitals+

PortionofHigherEd+PortionofIgn+PortionofUnemp,

data=Paneldata4,id=Province,

family=gaussian,corstr = "unstructured")

summary(marunst)

marunstsiglm=geeglm(SuicideRate PortionofHospitals+

PortionofDivorces+

GDP Per Capita Th ,

data=Paneldata4,id=Province,

family=gaussian,corstr = "unstructured")

summary(marunstsiglm)

AR Correlation

marglmarm=geeglm(SuicideRate PortionofHospitals+

PortionofDivorces+

GDP Per Capita Th ,

data=Paneldata4,id=Province,

family=gaussian,corstr = "ar1")

summary(marglmarm)

Exchangable correlation

marglmexc=geeglm(SuicideRate PortionofHospitals+

PortionofDivorces+GDP Per Capita Th ,

data=Paneldata4,id=Province,

family=gaussian,corstr = "exchangeable")

summary(marglmexc)

Final Model
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marglmfin=geeglm(SuicideRate PortionofHospitals+

PortionofDivorces,

data=Paneldata4,id=Province,

family=gaussian,corstr = "unstructured")

summary(marglmfin)

Different Marginal

MuMIn::QIC(marunstsiglm)

MuMIn::QIC(marglmarm)

MuMIn::QIC(marglmexc)

Residuals

resmar=marunstsiglmresiduals

stdresmar=scale(resmar)

getting rmse mae:

marfitted1=marunstsiglmfitted.values

marfitted2=revboxcox(marfitted1)

rmse marg p3=rmse(Paneldata3SuicideRate,marfitted2)

rmse marg p4=rmse(Paneldata4SuicideRate,marfitted1)

mae marg p3=mae(Paneldata3SuicideRate,marfitted2)

mae marg p4=mae(Paneldata4SuicideRate,marfitted1)

margmae=rmse(Paneldata3SuicideRate,marfitted)

scatter.smooth(Paneldata4Year,stdresmar,

xlab="Year",ylab="Standardized Residuals of Marginal

Model",xaxt= n )

axis(side = 1, at=2012:2019)

standardized residuals vs. covariates (marginal model):

scatter.smooth(Paneldata4PortionofHospitals,stdresmar,

main="Scatterplot of Standardized Residuals of

Marginal Model versus Portion of Hospitals",
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xlab="Portion of Hospitals",ylab="Standardized

Residuals of Marginal Model")

scatter.smooth(Paneldata4PortionofDivorces,stdresmar,

main="Scatterplot of Standardized Residuals of

Marginal Model versus Portion of Divorces",

xlab="Portion of Divorces",ylab="Standardized

Residuals of Marginal Model")

fitted response values vs. real response values (marginal model):

scatter.smooth(Paneldata3SuicideRate,marfitted2,

xlab="Suicide Rate",ylab="Fitted Response Values of

Fixed Effects Model",ylim=c(0,12))

Random Models

rand1=lmer(SuicideRate Year+GDP Per Capita Th+FertilityRate+

OldAgeDependencyRatio+Metropolitan+

PortionofHospitals+PortionofHigherEd+PortionofIgn+

PortionofUnemp+PortionofDivorces+(1 Province),

data=Paneldata4)

summary(rand1)

rand2=lmer(SuicideRate Year+GDP Per Capita Th+FertilityRate+

OldAgeDependencyRatio+Metropolitan+

PortionofHospitals+PortionofHigherEd+PortionofIgn

+PortionofUnemp+PortionofDivorces+(Year Province

),

data=Paneldata4)

summary(rand2)

randsig=lmer(SuicideRate GDP Per Capita Th+PortionofHospitals+

PortionofDivorces+(1 Province),
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data=Paneldata4)

summary(randsig)

randsig2=lmer(SuicideRate PortionofHospitals+

PortionofDivorces+(Year Province),

data=Paneldata4)

summary(randsig2)

randsig=lmer(SuicideRate PortionofHospitals+PortionofDivorces

+(1 Province),

data=Paneldata4)

summary(randsig)

Residuals

resrand=resid(randsig)

stdresrand=scale(resrand)

getting rmse:

randfitted=fitted.values(randsig)

randfitted2=revboxcox(randfitted)

rmse rand p3=rmse(Paneldata3SuicideRate,randfitted2)

rmse rand p4=rmse(Paneldata4SuicideRate,randfitted)

mae rand p3=mae(Paneldata3SuicideRate,randfitted2)

mae rand p4=mae(Paneldata4SuicideRate,randfitted)

scatter.smooth(Paneldata4Year,stdresrand,

xlab="Year",ylab="Standardized Residuals of Random

Effects Model",xaxt= n )

axis(side = 1, at=2012:2019)

standardized residuals vs. covariates (random effects model):

scatter.smooth(Paneldata4PortionofHospitals,stdresrand,

main="Scatterplot of Standardized Residuals of

Random Effects Model versus Portion of Hospitals

",

xlab="Portion of Hospitals",ylab="Standardized
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Residuals of Random Effects Model")

scatter.smooth(Paneldata4PortionofDivorces,stdresrand,

main="Scatterplot of Standardized Residuals of

Random Effects Model versus Portion of Divorces",

xlab="Portion of Divorces",ylab="Standardized

Residuals of Random Effects Model")

fitted response values vs. real response values (random effects

model):

par(mfrow=c(1,2))

scatter.smooth(Paneldata3SuicideRate,randfitted2,

xlab="Suicide Rate",ylab="Fitted Response Values of

Random Effects Model",ylim=c(0,12))

par(mfrow=c(1,1))

randdiff=randfitted2 randfitted

hist(randdiff)

vif(rand1)

resrand=resid(rand1)

stdresrand=scale(resrand)

Transition Model

behind=subset(Paneldata4,Year 2019,select=SuicideRate)

transdata=subset(Paneldata4,Year 2012)

transdata2=subset(Paneldata3,Year 2012)

transdata["Behind"]=behind

trans=geeglm(SuicideRate Behind+Year+GDP Per Capita Th+

FertilityRate+OldAgeDependencyRatio+Metropolitan+
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PortionofHospitals+PortionofHigherEd+PortionofIgn+

PortionofUnemp+PortionofDivorces,

data=transdata,id=Province,family=gaussian,corstr="

independence")

summary(trans)

transsig=geeglm(SuicideRate Behind+PortionofDivorces,

data=transdata,id=Province,family=gaussian,corstr="

independence")

summary(transsig)

Residuals

restrans=transsigresiduals

stdrestrans=scale(restrans)

getting rmse:

library(Metrics)

y3=transdataSuicideRate

transfitted1=transsigfitted.values

transfitted2=revboxcox(transfitted1)

rmse trans p3=rmse(transdata2SuicideRate,transfitted2)

rmse trans p4=rmse(transdataSuicideRate,transfitted1)

mae trans p3=mae(transdata2SuicideRate,transfitted2)

mae trans p4=mae(transdataSuicideRate,transfitted1)

transmae=mae(backed,transfitted)

scatter.smooth(transdataYear,stdrestrans,

xlab="Year",ylab="Standardized Residuals of

Transition Model",xaxt= n )

axis(side = 1, at=2013:2019)

standardized residuals vs. covariates (transition model):

scatter.smooth(transdataBehind,stdrestrans,

main="Scatterplot of Standardized Residuals of

Transition Model versus Lagged Suicide Rate",

xlab="Lagged Suicide Rate",ylab="Standardized
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Residuals of Random Effects Model")

scatter.smooth(transdataPortionofDivorces,stdrestrans,

main="Scatterplot of Standardized Residuals of

Transition Model versus Portion of Divorces",

xlab="Crude Birth Rate (Per Thousand)",ylab="

Standardized Residuals of Random Effects Model")

fitted response values vs. real response values (Transition model)

:

scatter.smooth(transdata2SuicideRate,transfitted2,

xlab="Suicide Rate",ylab="Fitted Response Values of

Transition Model",ylim=c(0,12))

Hybrid Models

z=matrix(rep(1,648),nrow=648,ncol=1) Random Effect Predictors

Mixed Effects Random Forest

set.seed(111)

merf=MERF(Y = Paneldata4SuicideRate, X = Paneldata4[ , c(1,2,3,6

,10,11)], Z=z , id=Paneldata4Province ,time=Paneldata4 Year ,

sto="none" )

predmerf=predict(merf, X = Paneldata4[ , c(1,2,3,6,10,11)], Z=z ,

id=Paneldata4Province ,time=Paneldata4 Year)

revpredmerf=revboxcox(predmerf)

resmerf=Paneldata4SuicideRate predmerf

stdresmerf=scale(resmerf)

plot(merf[["forest"]],main="")

scatter.smooth(Paneldata4Year,stdresmerf,

xlab="Year",ylab="Standardized Residuals of MERF
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Model",xaxt= n )

axis(side = 1, at=2012:2019)

fitted response values vs. real response values (Mixed Effects

Random Forest model):

scatter.smooth(Paneldata3SuicideRate,revpredmerf,

xlab="Suicide Rate",ylab="Fitted Response Values of

MERF Model",ylim=c(0,12))

Rmse

rmse merf p3=rmse(Paneldata3SuicideRate,revpredmerf)

rmse merf p4=rmse(Paneldata4SuicideRate,predmerf)

mae merf p3=mae(Paneldata3SuicideRate,revpredmerf)

mae merf p4=mae(Paneldata4SuicideRate,predmerf)

Mixed Effects Regression Tree

mert=MERT(Y = Paneldata4SuicideRate, X = Paneldata4[ , c(1,2,3,1

1)], Z=z , id=Paneldata4Province ,time=Paneldata4 Year ,sto="

none" )

predmert=predict(mert, X = Paneldata4[ , c(1,2,3,11)], Z=z , id=

Paneldata4Province ,time=Paneldata4 Year)

revpredmert=revboxcox(predmert)

resmert=Paneldata4SuicideRate predmert

stdresmert=scale(resmert)

scatter.smooth(Paneldata4Year,stdresmert,

xlab="Year",ylab="Standardized Residuals of MERT

Model",xaxt= n ,ylim=c( 4,4))

axis(side = 1, at=2012:2019)

fitted response values vs. real response values (Mixed Effects

Random Tree model):

scatter.smooth(Paneldata3SuicideRate,revpredmert,

xlab="Suicide Rate",ylab="Fitted Response Values of

MERT Model",ylim=c(0,12))
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Rmse

rmse mert p3=rmse(Paneldata3SuicideRate,revpredmert)

rmse mert p4=rmse(Paneldata4SuicideRate,predmert)

mae mert p3=mae(Paneldata3SuicideRate,revpredmert)

mae mert p4=mae(Paneldata4SuicideRate,predmert)

Random Effects Expectation Maximization Trees

reem=LongituRF::REEMtree(Y = Paneldata4SuicideRate, X =

Paneldata4[,c(7,9,12)], Z=z , id=Paneldata4Province ,time=

Paneldata4 Year ,sto="none")

predreem=predict(reem, X = Paneldata4[,c(7,9,12)], Z=z , id=

Paneldata4Province ,time=Paneldata4 Year)

revpredreem=revboxcox(predreem)

resreem=Paneldata4SuicideRate predreem

stdresreem=scale(resreem)

rmse reem p4=rmse(Paneldata4SuicideRate,predreem)

rmse reem p3=rmse(Paneldata3SuicideRate,revpredreem)

mae reem p4=mae(Paneldata4SuicideRate,predreem)

mae reem p3=mae(Paneldata3SuicideRate,revpredreem)

rpart.plot(reem[["forest"]])

scatter.smooth(Paneldata4Year,stdresreem,

xlab="Year",ylab="Standardized Residuals of RE EM

Tree Model",xaxt= n ,ylim=c( 4,4))

axis(side = 1, at=2012:2019)

fitted response values vs. real response values (Mixed Effects

Random Tree model):

scatter.smooth(Paneldata3SuicideRate,revpredreem,

xlab="Suicide Rate",ylab="Fitted Response Values of

RE EM Tree Model",ylim=c(0,12))
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Comparison

rmsesp3=c(rmse marg p3,rmse rand p3 ,rmse trans p3,rmse merf p3,

rmse mert p3,rmse reem p3)

rmsesp4=c(rmse marg p4,rmse rand p4 ,rmse trans p4,rmse merf p4,

rmse mert p4,rmse reem p4)

maesp3=c(mae marg p3,mae rand p3 ,mae trans p3,mae merf p3,

mae mert p3,mae reem p3)

maesp4=c(mae marg p4,mae rand p4 ,mae trans p4,mae merf p4,

mae mert p4,mae reem p4)

comps=rbind(rmsesp3,rmsesp4,maesp3,maesp4)

rownames(comps)=c("RMSEp3","RMSEp4","maesp3","maesp4")

colnames(comps)=c("Marginal","Random","Transition","MERF","MERT","

REEM")

Result Correlations

marcorr=cor(Paneldata3SuicideRate,marfitted2)

randcorr=cor(Paneldata3SuicideRate,randfitted2)

transcorr=cor(transdata2SuicideRate,transfitted2)

mertcorr=cor(Paneldata3SuicideRate,revpredmert)

merfcorr=cor(Paneldata3SuicideRate,revpredmerf)

reemcorr=cor(Paneldata3SuicideRate,revpredreem)

Correlation=c(randcorr,marcorr,transcorr,mertcorr,merfcorr,

reemcorr)

Methods=c("Random Effect","Fixed Effect","Transition","MERT","MERF

","RE EM Tree")

rescorrs=data.frame(Methods,Correlation)

Results for some of the provinces

konya1=subset(Paneldata3,Province=="Konya")

konya2=revpredmerf[as.numeric(row.names(konya1))]

data.frame(Years=c(2012:2019) ,Actual=konya1SuicideRate,Predicted

=konya2,Difference=abs(konya1SuicideRate konya2))

istanbul1=subset(Paneldata3,Province==" stanbul ")
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istanbul2=revpredmerf[as.numeric(row.names(istanbul1))]

data.frame(Years=c(2012:2019) ,Actual=istanbul1SuicideRate,

Predicted=istanbul2,Difference=abs(istanbul1SuicideRate

istanbul2))

trabzon1=subset(Paneldata3,Province=="Trabzon")

trabzon2=revpredmerf[as.numeric(row.names(trabzon1))]

data.frame(Years=c(2012:2019) ,Actual=trabzon1SuicideRate,

Predicted=trabzon2,Difference=abs(trabzon1SuicideRate trabzon2

))

bayburt1=subset(Paneldata3,Province=="Bayburt")

bayburt2=revpredmerf[as.numeric(row.names(bayburt1))]

data.frame(Years=c(2012:2019) ,Actual=bayburt1SuicideRate,

Predicted=bayburt2,Difference=abs(bayburt1SuicideRate bayburt2

))

Additions after thesis defence

library(ggplot2)

reshapirosp=vector()

reshapirosw=vector()

for(i in 0:7)

shap=shapiro.test(stdresmar[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2012:2019)

margres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(margres)=NULL

colnames(margres)=c("Year","W Statistic","p value")

margres

marginerrors=data.frame(years=rep(2012:2019,each=81),stdresmar)

ggplot(marginerrors, aes(x = years, y = stdresmar,group=years)) +

labs(y="Standardized Residuals of Marginal Model") +
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geomboxplot()

Random Effect

reshapirosp=vector()

reshapirosw=vector()

for(i in 0:7)

shap=shapiro.test(stdresrand[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2012:2019)

randres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(randres)=NULL

colnames(randres)=c("Year","W Statistic","p value")

randres

randerrors=data.frame(years=rep(2012:2019,each=81),stdresrand)

ggplot(randerrors, aes(x = years, y = stdresrand,group=years)) +

labs(y="Standardized Residuals of Random Model") +

geomboxplot()

Transition

reshapirosp=vector()

reshapirosw=vector()

for(i in 0:6)

shap=shapiro.test(stdrestrans[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2013:2019)

transres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(transres)=NULL
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colnames(transres)=c("Year","W Statistic","p value")

transres

transerrors=data.frame(years=rep(2013:2019,each=81),

stdrestrans)

ggplot(transerrors, aes(x = years, y = stdrestrans,group=years))

+ labs(y="Standardized Residuals of Transition Model") +

geomboxplot()

MERF

reshapirosp=vector()

reshapirosw=vector()

for(i in 0:7)

shap=shapiro.test(stdresmerf[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2012:2019)

merfres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(merfres)=NULL

colnames(merfres)=c("Year","W Statistic","p value")

merfres

merferrors=data.frame(years=rep(2012:2019,each=81),stdresmerf)

ggplot(merferrors, aes(x = years, y = stdresmerf,group=years)) +

labs(y="Standardized Residuals of MERF Model") +

geomboxplot()

MERT

reshapirosp=vector()

reshapirosw=vector()
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for(i in 0:7)

shap=shapiro.test(stdresmert[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2012:2019)

mertres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(mertres)=NULL

colnames(mertres)=c("Year","W Statistic","p value")

mertres

merterrors=data.frame(years=rep(2012:2019,each=81),stdresmert)

ggplot(merterrors, aes(x = years, y = stdresmert,group=years)) +

labs(y="Standardized Residuals of MERT Model") +

geomboxplot()

RE EM Tree

reshapirosp=vector()

reshapirosw=vector()

for(i in 0:7)

shap=shapiro.test(stdresreem[81 i+1:81 ( i+1)])

reshapirosp=append(reshapirosp,shap[[2]])

reshapirosw=append(reshapirosw,shap[[1]])

Year=c(2012:2019)

reemres=data.frame(cbind(Year,reshapirosw,reshapirosp))

rownames(reemres)=NULL

colnames(reemres)=c("Year","W Statistic","p value")

reemres

reemerrors=data.frame(years=rep(2012:2019,each=81),stdresreem)

ggplot(reemerrors, aes(x = years, y = stdresreem,group=years)) +
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labs(y="Standardized Residuals of RE EM Tree Model") +

geomboxplot()

Suicide Rate Boxplots

suirates=data.frame(Years=rep(2012:2019,each=81),sui=Paneldata3

SuicideRate)

ggplot(suirates, aes(x = Years, y = sui,group=Years)) + labs(y="

Suicide Rates of Each Year") +

geomboxplot()
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